
Teaching TeCS — A Case Study for MMiSS

Markus Roggenbach

FB 3 — Mathematik und Informatik, Universität Bremen
roba@informatik.uni-bremen.de

Abstract. TeCS (Techniques for the development of Correct Software),
a two semester course presented at Universität Bremen, gave rise to first
experiences with teaching in the context of the MMiSS project.
The talk will present sample slides of this course and discuss the benefits
of the MMiSS teaching environment for the different participants: the
author of the course material, the lecturer, and the students.

The two semester course TeCS (Techniques for the development of
Correct Software) provides a gentle introduction to formal methods for
software development. It deals with sequential as well as with reactive sys-
tems, using the algebraic specification language Casl [2] and the process
algebra CSP, e.g. [3], respectively. On the tool’s side, the theorem prover
Isabelle and the model checker FDR play central roles. Besides simple ex-
ercises explaining single concepts, the TeCS problem sheets also includes
more complex tasks like specifying a family game (Nine Men’s Morris) in
Casl; verifying a simple interpreter within Isabelle/HOL; modelling a file
system in Casl at both the requirements and the design level; proving
the refinement relation between these two specifications in HOL/CASL.

To present courses like TeCS within the MMiSS project, a markup
language MMiSSLATEX has been developed, which consists essentially of
a collection of LATEX style files. These style files provide semantic anno-
tations for sustainable development, and create an adequate presentation
in situations where standard LATEX is not sufficient. For example, a style
for lecture slides produces a uniform format together with a consistent,
configurable color scheme — see the example slide in Fig. 1 — and a
variety of additional features, such as hyperlinks, animations, and inter-
active invocation of applications. Such features are not available in DVI.
Therefore MMiSSLATEX produces PDF. Semantic annotations are imple-
mented as newly defined LATEX commands. This way, authors can write
usual LATEX first (e.g. to produce slides for a lecture rather quickly), and
add semantic annotations later.

Presenting TeCS using the presentational part of MMiSSLATEX has
been quite successful:

1. For the author, the overhead to produce course material within the
MMiSSLATEX format is neglectable compared to another presentation
system.



2. Besides the usual benefits of a computer based presentation like ‘no
slide confusion’, the MMiSSLATEX integration of tool demonstrations
in the slides encourages the teacher to vivify the lectures by live
demonstrations on the computer.

3. The students are fond of the
– the readability
– the consistent markup, and the
– download-friendly PDF-filesize

of the slides.

It should be mentioned that these positive results also arise from a cau-
tious usage of computer based presentations: about half of the course
material has been taught in ‘classical style’ using a blackboard. A poll
among the students of TeCS gave the result that this is an optimal mix-
ture.

References

1. CoFI. The Common Framework Initiative, electronic archives. Notes and documents
accessible from http://www.cofi.info.

2. CoFI Language Design Task Group. Casl – The CoFI Algebraic Specification
Language – Summary, version 1.0.1. Documents/CASL/Summary, in [1], Mar. 2001.

3. A. Roscoe. The theory and practice of concurrency. Prentice Hall, 1998.

Formal Methods 1

Formal Methods

“Use of mathematics in software development”

main activities:

• writing formal specifications

• proving properties about formal specifications

• constructing a program by mathematical

manipulation of a formal specification

• verifying a program by mathematical argument

Markus Roggenbach: Formal Methods in Software Design, October 2001

Fig. 1. A sample slide of TeCS


